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Abstract. The reducedSL(2,R) WZW quantum mechanics is analysed within the framework
of geometric quantization. The spectrum of the Hamiltonian is determined, and it is found, that in
contrast to previous approaches, there is a unique, physically preferred quantization of the system.

The global aspects of the WZW→ Toda reduction [1], were analysed in [2] at the classical
level. As a toy example the authors also considered the reduction of the system of a free particle
moving on theSL(2,R) group manifold. The problem of how to quantize this reduced system
was addressed in [3, 4]. Both found inequivalent quantizations labelled by one or two real
parameters. In this paper, using the method of geometric quantization, we argue that there is
a unique quantization of the problem.

After reminding the known facts about the dynamics of a free particle moving on the
SL(2,R) group we impose Liouville-type constraints. The reduced system is quantized
geometrically and the spectrum of the Hamiltonian is determined. Finally, we compare the
results obtained to those of [3, 4] and comment on the differences.

Consider a free particle moving on the groupSL(2,R). The dynamics is governed by the
Lagrangian

L(g, ġ) = 1
2 Tr(g−1ġg−1ġ).

It is invariant under the transformationsg → gleftgg
−1
right, for which the Noether currents are

J := Jleft = ġg−1 and J̃ := Jright = −g−1ġ = −g−1Jg. The equation of motion is the
conservation of the currenṫJ = 0, with the geodetical motions as solutions.

In describing the dynamics at the Hamiltonian level we use the velocity phase space
M = TG = G × G coordinatized byg andJ ∈ G. The symplectic form is� = dθL =
d Tr(J dg g−1) as in [5], whereθL =

∑
i
∂L
∂qi

dqi is the symplectic potential determined by the
Lagrangian as usual. Clearly, the symplectic potential is not unique. Due to the non-trivial
topology of the phase spaceM = (S1 × R2) × R3 we could have different choices forθ
corresponding to the various cohomology elements labelled byR. Note, however, that the
only symplectic potential which is invariant under the full symmetry group is the one that
corresponds to the Lagrangian, i.e.θL. (To see that no other invariant symplectic potential
exists observe that thanks to the structure of the phase space the non-trivial elements of the
cohomology group correspond to the non-trivial cohomology class of the group itself. On the
group, however, there exists no non-trivial left- and right-invariant 1-form). The Hamiltonian
H = 1

2 Tr(J 2) generates the dynamics:̇J = 0, ġ = Jg.
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The global Liouville system can be obtained by Hamiltonian reduction. One fixes certain
components of the conserved currents:

J =
(
J0 J+

1 −J0

)
J̃ =

(
J̃0 1
J̃− −J̃0

)
.

The projected symplectic form is degenerate, the constraints are first class. Since the gauge
transformations are nothing but the symmetry transformations generated by the strictly upper-
and strictly lower-diagonal matrices the Hamiltonian and the symplectic potential are gauge
invariant. The reduced system can be obtained via gauge fixing

Jgf =
(

0 J+

1 0

)
J̃gf =

(
0 1
J+ 0

)
g =

( −J+g22 −g21

g21 g22

)
.

The parametersg21, g22, J+ are not independent, and we have the condition

g2
21− J+g

2
22 = 1. (1)

These mean that the reduced phase space is a regular hypersurface ofR3 determined by (1).
Topologically, it isS1× R and it has the symplectic potential

θ = −2J+g22 dg21 + g21g22 dJ+ + 2J+g21 dg22. (2)

Let us emphasize once more that it is possible to change the cohomology class ofθ without
affecting the symplectic structure. This altered symplectic potential, however, does not
correspond to the originalθL, i.e. to the Lagrangian, so it describes a physically different
system as we will see at the quantum level.

It was shown in [8], that the reduced phase space is, in fact, symplectomorphic toT ∗S1,
but the Hamiltonian is very complicated:H = sin−2 ϕ (cos2 ϕ − exp(pϕ sin2 ϕ)), so this
description is not useful in quantizing the system. The Hamiltonian in our language, however,
is very simple:

H = 1
2 Tr(J 2

gf ) = J+.

The solutions of the equations of motion can be read off from equation (1), they are the
curves with constant energies. They are ellipsis for negative energies, lines for zero energy
and hyperbolae for positive energies. We adopt a coordinate system to respect these curves,
i.e. one of the parameters is the energy, while the other one parametrizes the orbit. The phase
space can be covered by four neighbourhoods as

M±< = {H < 0, ±g21 > −ε} M±> = {H > −ε, ±g21 > 1− ε}
whereε is a small positive parameter less than1

2. From now on in the expression±, +, (−)
will refer to the part whereg21 > 0 (< 0), respectively. For negative energies we parametrize
the phase space as

g21 = ± cos(
√−Ht) g22 =

√−H−1
sin(
√−Ht)

where− 1
2π − δ(ε) <

√−Ht < 1
2π + δ(ε), while for positive energies as

g21 = ± cosh(
√
Ht) g22 = ±

√
H
−1

sinh(
√
Ht) −∞ < t <∞.

The symplectic potential and the symplectic form in both regimes are

θ = 2H dt + t dH � = dH ∧ dt.
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Although this parametrization covers the whole phase space with a smooth limit forH → 0, the
correct description is to restrict them into the neighbourhoods defined above. The Hamiltonian
vector field of the Hamiltonian,H , is defined in the usual way,�(XH , ·)+dH = 0, it is simply
XH = ∂/∂t .

In quantizing the theory we use the method of geometric quantization [6, 7]. It contains
two steps. In the first, called the prequantization, one constructs a Hermitian line bundle
over the phase space with curvature ¯h−1� (with connection 1-form ¯h−1θ ). For each classical
observable,f , a symmetric operator,̂f = −ih̄∇Xf +f , is assigned, which acts on the square-
integrable sections of the bundle (pre-quantum wavefunctions). This operator is self-adjoint
if the Hamiltonian flow off is complete. Pre-quantum wavefunctions, however, depend on
both coordinates, which is not acceptable for an adequate quantum theory. To avoid this in
the second step a polarization is chosen and the Hilbert space is restricted to be built up from
the square-integrable polarized sections. Accordingly, only those functions are quantizable,
whose Hamiltonian flow preserves the polarization.

The first step in quantizing the theory is easy. Since the symplectic form is exact the
line bundle exists and is also trivial. It is not unique, however, as the inequivalent choices are
characterized by the holonomy of the connection and are parametrized by the unit circle.

A similar situation appears in the case of a non-simply connected configuration space, as
in the Bohm–Aharonov effect. There one is faced with the fact that although at the classical
level the system is determined by the equation of motion, which can be derived from various
Lagrangians, at the quantum level the Lagrangian itself defines the theory, since it contains the
vector potential explicitly. Different Lagrangians (different vector potentials) with the same
classical theories describe different, physically non-equivalent quantum systems.

Concretizing to our case we have to use the globally defined symplectic potential (2),
which corresponds to the original Lagrangian. Choosing a global sections0, the connection is
defined by

∇s0 = −ih̄−1θs0 ∇s = (d − ih̄−1θ)s.

Sinceθ is reals0 can be normalized as(s0,s0) = 1. Now each section can be written in the form
s = ψs0, whereψ is a function on the phase space, i.e. the Hilbert space of the prequantized
theory consists of the square-integrable functions (for the integration measureh−1�). The
operator we are interested in is the Hamiltonian. It acts on the sections as

Ĥ s = (−ih̄∇XH +H)s.

In order to make correspondence with the usual language of quantum mechanics we remind
the reader that

∇XH s = ∇XHψs0 = (XHψ − ih̄−1θ(XH )ψ)s0 =
(
∂ψ

∂t
− ih̄−12Hψ

)
s0.

The second part of the geometric quantization is much more delicate. First of all we have
to choose a polarization, a Lagrangian integrable distribution, for which the Hamiltonian is
quantizable, i.e. which is preserved by the flow of the Hamiltonian. The most natural choice
corresponds toXH , i.e. the polarization given byP = {∂/∂t}. It is not a reducible polarization
in the sense of [6], since the space of leaves is not a Hausdorff topological space. The leaves
corresponding to the free motions,H = 0, do not have disjoint neighbourhoods, they are
connected via the negative energy part of the phase space. It is not a problem, however, since
for negative energies the leaves are compact and, as we will soon see, no non-zero smooth
covariantly constant section exists.
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The polarized sections,∇XH s = 0, have the form e2iHh̄−1tψ(H)s0. The pairing of two
polarized sections are constant along the leaves (t = constant surfaces), so if the leaves are
not compact then the integral over them is infinite, which is unacceptable. Clearly, what we
need is to integrate over the reduced spaceM/P only, but there is no natural measure on this
space. This problem is solved within the framework of geometric quantization by changing the
geometric character of the wavefunctions: they are the square-integrable polarized sections
of the modified bundleB ⊗ δP , whereδP is the half-form bundle. This modification not
only ensures that the pairing of two wavefunctions gives densities on the space of leaves
but also restores the correct relationship between the quantizations corresponding to different
polarizations.

Taking a look at the polarized sections we can see that for compact leaves covariantly
constant sections exist only for certain discrete values of the energy, consequently they cannot
be smooth. The proper description is to deal with distributional wavefunctions in this domain,
(see [7] for the details). The supports of these functions, the so-called Bohr–Sommerfeld (BS)
varieties, are determined by the condition that the holonomy of the connection for the integral
manifolds of the polarization should be trivial∮

γ

θ = −2
√−H 2π = 2πh̄(nγ + dγ ) nγ ∈ Z

wheredγ = 1
2 is the holonomy corresponding to the bundleδP as a consequence of the

metaplectic correction. (In defining the square rootδP of the canonical bundleKP we have to
take into account that not the symplectic, rather its double cover, the metaplectic group acts
on it). For each BS variety a normalized section is associated, which is the eigenfunction of
the energy operator with the eigenvalue

Hn = − 1
4h̄

2(n + 1
2)

2.

(This result can also be understood by introducing the new variablesω = 2
√−H,ϕ = √−Ht

on the negative energy part of the phase space. Then it is easy to see that this part of the phase
space is the same as the phase space of the harmonic oscillator parametrized by its energyω

and by the usual angleϕ.)
The positive part of the spectrum is doubly degenerate and continuous.
The whole Hilbert space can be built up from the energy eigenfunctions as follows. It

consists of the square-integrable functions9±(H),H > 0 and the square-summable sequence
of numbers9n. The inner product of two elements of the Hilbert space,9 and8 is given by

〈9,8〉 =
∫ ∞

0
dH 9∗+(H)8+(H) +

∫ ∞
0

dH 9∗−(H)8−(H) +
∞∑
n=0

9∗n8n.

Summarizing we quantized the system within the framework of geometric quantization
and found a unique discrete spectrum for negative energies and a continuous doubly degenerate
spectrum for non-negative energies. Comparing the result with that of [3, 4] we can say that
our result is different from those: we have a unique quantization. The appearance of their
parameters is due to the fact that they chose a bad parametrization for the phase space in which
the linesg22 = 0 had to be removed. Since every motion intersects at least one of those lines
the flow of the Hamiltonian is not complete, i.e. the associated operator is not self-adjoint.
Finding the possible self-adjoint extensions they arrived at the models, which in our language
can be described by different symplectic potentials. (The holonomy of the various symplectic
potentials are parametrized by a unit modulus number which also appears in the spectrum of
the energy.) We have seen, however, that there is one physically preferred among them, the
one which corresponds to the Lagrangian.
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